Source code for dagster._core.definitions.freshness_policy_sensor_definition

from typing import Callable, Dict, Mapping, NamedTuple, Optional, cast

import pendulum

import dagster._check as check
from dagster._annotations import PublicAttr, experimental
from dagster._core.definitions.asset_selection import AssetSelection
from dagster._core.definitions.events import AssetKey
from dagster._core.definitions.freshness_policy import FreshnessPolicy
from dagster._core.errors import (
    DagsterInvalidDefinitionError,
    DagsterInvalidInvocationError,
    FreshnessPolicySensorExecutionError,
    user_code_error_boundary,
)
from dagster._core.instance import DagsterInstance
from dagster._serdes import (
    deserialize_json_to_dagster_namedtuple,
    serialize_dagster_namedtuple,
    whitelist_for_serdes,
)
from dagster._serdes.errors import DeserializationError
from dagster._seven import JSONDecodeError
from dagster._utils.caching_instance_queryer import CachingInstanceQueryer

from ..decorator_utils import get_function_params
from .sensor_definition import (
    DefaultSensorStatus,
    SensorDefinition,
    SensorEvaluationContext,
    SkipReason,
    is_context_provided,
)


@whitelist_for_serdes
class FreshnessPolicySensorCursor(
    NamedTuple(
        "_FreshnessPolicySensorCursor",
        [("minutes_late_by_key_str", Mapping[str, Optional[float]])],
    )
):
    def __new__(cls, minutes_late_by_key_str: Mapping[str, Optional[float]]):

        return super(FreshnessPolicySensorCursor, cls).__new__(
            cls,
            minutes_late_by_key_str=check.mapping_param(
                minutes_late_by_key_str, "minutes_late_by_key_str", key_type=str
            ),
        )

    @staticmethod
    def is_valid(json_str: str) -> bool:
        try:
            obj = deserialize_json_to_dagster_namedtuple(json_str)
            return isinstance(obj, FreshnessPolicySensorCursor)
        except (JSONDecodeError, DeserializationError):
            return False

    @staticmethod
    def from_dict(
        minutes_late_by_key: Mapping[AssetKey, Optional[float]]
    ) -> "FreshnessPolicySensorCursor":
        return FreshnessPolicySensorCursor(
            minutes_late_by_key_str={k.to_user_string(): v for k, v in minutes_late_by_key.items()}
        )

    @property
    def minutes_late_by_key(self) -> Mapping[AssetKey, Optional[float]]:
        return {AssetKey.from_user_string(k): v for k, v in self.minutes_late_by_key_str.items()}

    def to_json(self) -> str:
        return serialize_dagster_namedtuple(cast(NamedTuple, self))

    @staticmethod
    def from_json(json_str: str) -> "FreshnessPolicySensorCursor":
        return cast(FreshnessPolicySensorCursor, deserialize_json_to_dagster_namedtuple(json_str))


[docs]class FreshnessPolicySensorContext( NamedTuple( "_FreshnessPolicySensorContext", [ ("sensor_name", PublicAttr[str]), ("asset_key", PublicAttr[AssetKey]), ("freshness_policy", PublicAttr[FreshnessPolicy]), ("minutes_late", PublicAttr[Optional[float]]), ("previous_minutes_late", PublicAttr[Optional[float]]), ("instance", PublicAttr[DagsterInstance]), ], ) ): """The ``context`` object available to a decorated function of ``freshness_policy_sensor``. Attributes: sensor_name (str): the name of the sensor. asset_key (AssetKey): the key of the asset being monitored freshness_policy (FreshnessPolicy): the freshness policy of the asset being monitored minutes_late (Optional[float]) previous_minutes_late (Optional[float]): the minutes_late value for this asset on the previous sensor tick. instance (DagsterInstance): the current instance. """ def __new__( cls, sensor_name: str, asset_key: AssetKey, freshness_policy: FreshnessPolicy, minutes_late: Optional[float], previous_minutes_late: Optional[float], instance: DagsterInstance, ): minutes_late = check.opt_numeric_param(minutes_late, "minutes_late") previous_minutes_late = check.opt_numeric_param( previous_minutes_late, "previous_minutes_late" ) return super(FreshnessPolicySensorContext, cls).__new__( cls, sensor_name=check.str_param(sensor_name, "sensor_name"), asset_key=check.inst_param(asset_key, "asset_key", AssetKey), freshness_policy=check.inst_param(freshness_policy, "FreshnessPolicy", FreshnessPolicy), minutes_late=float(minutes_late) if minutes_late is not None else None, previous_minutes_late=float(previous_minutes_late) if previous_minutes_late is not None else None, instance=check.inst_param(instance, "instance", DagsterInstance), )
[docs]@experimental def build_freshness_policy_sensor_context( sensor_name: str, asset_key: AssetKey, freshness_policy: FreshnessPolicy, minutes_late: Optional[float], previous_minutes_late: Optional[float] = None, instance: Optional[DagsterInstance] = None, ) -> FreshnessPolicySensorContext: """ Builds freshness policy sensor context from provided parameters. This function can be used to provide the context argument when directly invoking a function decorated with `@freshness_policy_sensor`, such as when writing unit tests. Args: sensor_name (str): The name of the sensor the context is being constructed for. asset_key (AssetKey): The AssetKey for the monitored asset freshness_policy (FreshnessPolicy): The FreshnessPolicy for the monitored asset minutes_late (Optional[float]): How late the monitored asset currently is previous_minutes_late (Optional[float]): How late the monitored asset was on the previous tick. instance (DagsterInstance): The dagster instance configured for the context. Examples: .. code-block:: python context = build_freshness_policy_sensor_context( sensor_name="freshness_policy_sensor_to_invoke", asset_key=AssetKey("some_asset"), freshness_policy=FreshnessPolicy(maximum_lag_minutes=30)< minutes_late=10.0, ) freshness_policy_sensor_to_invoke(context) """ return FreshnessPolicySensorContext( sensor_name=sensor_name, asset_key=asset_key, freshness_policy=freshness_policy, minutes_late=minutes_late, previous_minutes_late=previous_minutes_late, instance=instance or DagsterInstance.ephemeral(), )
[docs]class FreshnessPolicySensorDefinition(SensorDefinition): """ Define a sensor that reacts to the status of a given set of asset freshness policies, where the decorated function will be evaluated on every sensor tick. Args: name (str): The name of the sensor. Defaults to the name of the decorated function. freshness_policy_sensor_fn (Callable[[FreshnessPolicySensorContext], None]): The core evaluation function for the sensor. Takes a :py:class:`~dagster.FreshnessPolicySensorContext`. asset_selection (AssetSelection): The asset selection monitored by the sensor. minimum_interval_seconds (Optional[int]): The minimum number of seconds that will elapse between sensor evaluations. description (Optional[str]): A human-readable description of the sensor. default_status (DefaultSensorStatus): Whether the sensor starts as running or not. The default status can be overridden from Dagit or via the GraphQL API. """ def __init__( self, name: str, asset_selection: AssetSelection, freshness_policy_sensor_fn: Callable[[FreshnessPolicySensorContext], None], minimum_interval_seconds: Optional[int] = None, description: Optional[str] = None, default_status: DefaultSensorStatus = DefaultSensorStatus.STOPPED, ): check.str_param(name, "name") check.inst_param(asset_selection, "asset_selection", AssetSelection) check.opt_int_param(minimum_interval_seconds, "minimum_interval_seconds") check.opt_str_param(description, "description") check.inst_param(default_status, "default_status", DefaultSensorStatus) self._freshness_policy_sensor_fn = check.callable_param( freshness_policy_sensor_fn, "freshness_policy_sensor_fn" ) def _wrapped_fn(context: SensorEvaluationContext): if context.repository_def is None: raise DagsterInvalidInvocationError( "The `repository_def` property on the `SensorEvaluationContext` passed into a " "`FreshnessPolicySensorDefinition` must not be None." ) if context.cursor is None or not FreshnessPolicySensorCursor.is_valid(context.cursor): new_cursor = FreshnessPolicySensorCursor({}) context.update_cursor(new_cursor.to_json()) yield SkipReason(f"Initializing {name}.") return evaluation_time = pendulum.now("UTC") instance_queryer = CachingInstanceQueryer(context.instance) asset_graph = context.repository_def.asset_graph monitored_keys = asset_selection.resolve(asset_graph) # get the previous status from the cursor previous_minutes_late_by_key = FreshnessPolicySensorCursor.from_json( context.cursor ).minutes_late_by_key minutes_late_by_key: Dict[AssetKey, Optional[float]] = {} for asset_key in monitored_keys: freshness_policy = asset_graph.freshness_policies_by_key.get(asset_key) if freshness_policy is None: continue # get the current minutes_late value for this asset minutes_late_by_key[asset_key] = instance_queryer.get_current_minutes_late_for_key( evaluation_time=evaluation_time, asset_graph=asset_graph, asset_key=asset_key, ) with user_code_error_boundary( FreshnessPolicySensorExecutionError, lambda: f'Error occurred during the execution of sensor "{name}".', ): result = freshness_policy_sensor_fn( FreshnessPolicySensorContext( sensor_name=name, asset_key=asset_key, freshness_policy=freshness_policy, minutes_late=minutes_late_by_key[asset_key], previous_minutes_late=previous_minutes_late_by_key.get(asset_key), instance=context.instance, ) ) if result is not None: raise DagsterInvalidDefinitionError( "Functions decorated by `@freshness_policy_sensor` may not return or yield a value." ) context.update_cursor( FreshnessPolicySensorCursor.from_dict(minutes_late_by_key).to_json() ) super(FreshnessPolicySensorDefinition, self).__init__( name=name, evaluation_fn=_wrapped_fn, minimum_interval_seconds=minimum_interval_seconds, description=description, default_status=default_status, ) def __call__(self, *args, **kwargs): if is_context_provided(self._freshness_policy_sensor_fn): if len(args) + len(kwargs) == 0: raise DagsterInvalidInvocationError( "Freshness policy sensor function expected context argument, but no context argument " "was provided when invoking." ) if len(args) + len(kwargs) > 1: raise DagsterInvalidInvocationError( "Freshness policy sensor invocation received multiple arguments. Only a first " "positional context parameter should be provided when invoking." ) context_param_name = get_function_params(self._freshness_policy_sensor_fn)[0].name if args: context = check.opt_inst_param( args[0], context_param_name, FreshnessPolicySensorContext ) else: if context_param_name not in kwargs: raise DagsterInvalidInvocationError( f"Freshness policy sensor invocation expected argument '{context_param_name}'." ) context = check.opt_inst_param( kwargs[context_param_name], context_param_name, FreshnessPolicySensorContext, ) if not context: raise DagsterInvalidInvocationError( "Context must be provided for direct invocation of freshness policy sensor." ) return self._freshness_policy_sensor_fn(context) else: raise DagsterInvalidDefinitionError( "Freshness policy sensor must accept a context argument." )
[docs]@experimental def freshness_policy_sensor( asset_selection: AssetSelection, *, name: Optional[str] = None, minimum_interval_seconds: Optional[int] = None, description: Optional[str] = None, default_status: DefaultSensorStatus = DefaultSensorStatus.STOPPED, ) -> Callable[[Callable[[FreshnessPolicySensorContext], None]], FreshnessPolicySensorDefinition,]: """ Define a sensor that reacts to the status of a given set of asset freshness policies, where the decorated function will be evaluated on every tick for each asset in the selection that has a FreshnessPolicy defined. Note: returning or yielding a value from the annotated function will result in an error. Takes a :py:class:`~dagster.FreshnessPolicySensorContext`. Args: asset_selection (AssetSelection): The asset selection monitored by the sensor. name (Optional[str]): The name of the sensor. Defaults to the name of the decorated function. freshness_policy_sensor_fn (Callable[[FreshnessPolicySensorContext], None]): The core evaluation function for the sensor. Takes a :py:class:`~dagster.FreshnessPolicySensorContext`. minimum_interval_seconds (Optional[int]): The minimum number of seconds that will elapse between sensor evaluations. description (Optional[str]): A human-readable description of the sensor. default_status (DefaultSensorStatus): Whether the sensor starts as running or not. The default status can be overridden from Dagit or via the GraphQL API. """ def inner( fn: Callable[[FreshnessPolicySensorContext], None] ) -> FreshnessPolicySensorDefinition: check.callable_param(fn, "fn") sensor_name = name or fn.__name__ return FreshnessPolicySensorDefinition( name=sensor_name, freshness_policy_sensor_fn=fn, asset_selection=asset_selection, minimum_interval_seconds=minimum_interval_seconds, description=description, default_status=default_status, ) return inner