Source code for dagster._core.definitions.multi_dimensional_partitions

import itertools
from datetime import datetime
from typing import Dict, List, Mapping, NamedTuple, Optional, Sequence, Tuple

import dagster._check as check
from dagster._annotations import experimental
from dagster._core.errors import DagsterInvalidDefinitionError, DagsterInvalidInvocationError
from dagster._core.storage.tags import (
    MULTIDIMENSIONAL_PARTITION_PREFIX,
    get_multidimensional_partition_tag,
)

from .partition import Partition, PartitionsDefinition, StaticPartitionsDefinition

INVALID_STATIC_PARTITIONS_KEY_CHARACTERS = set(["|", ",", "[", "]"])


class PartitionDimensionKey(
    NamedTuple("_PartitionDimensionKey", [("dimension_name", str), ("partition_key", str)])
):
    """
    Representation of a single dimension of a multi-dimensional partition key.
    """

    def __new__(cls, dimension_name: str, partition_key: str):
        return super(PartitionDimensionKey, cls).__new__(
            cls,
            dimension_name=check.str_param(dimension_name, "dimension_name"),
            partition_key=check.str_param(partition_key, "partition_key"),
        )


[docs]class MultiPartitionKey(str): """ A multi-dimensional partition key stores the partition key for each dimension. Subclasses the string class to keep partition key type as a string. Contains additional methods to access the partition key for each dimension. Creates a string representation of the partition key for each dimension, separated by a pipe (|). Orders the dimensions by name, to ensure consistent string representation. """ dimension_keys: List[PartitionDimensionKey] = [] def __new__(cls, keys_by_dimension: Mapping[str, str]): check.mapping_param( keys_by_dimension, "partitions_by_dimension", key_type=str, value_type=str ) dimension_keys: List[PartitionDimensionKey] = [ PartitionDimensionKey(dimension, keys_by_dimension[dimension]) for dimension in sorted(list(keys_by_dimension.keys())) ] str_key = super(MultiPartitionKey, cls).__new__( cls, "|".join([dim_key.partition_key for dim_key in dimension_keys]) ) str_key.dimension_keys = dimension_keys return str_key def __getnewargs__(self): # When this instance is pickled, replace the argument to __new__ with the # dimension key mapping instead of the string representation. return ({dim_key.dimension_name: dim_key.partition_key for dim_key in self.dimension_keys},) @property def keys_by_dimension(self) -> Mapping[str, str]: return {dim_key.dimension_name: dim_key.partition_key for dim_key in self.dimension_keys}
class PartitionDimensionDefinition( NamedTuple( "_PartitionDimensionDefinition", [ ("name", str), ("partitions_def", PartitionsDefinition), ], ) ): def __new__( cls, name: str, partitions_def: PartitionsDefinition, ): return super().__new__( cls, name=check.str_param(name, "name"), partitions_def=check.inst_param(partitions_def, "partitions_def", PartitionsDefinition), ) def __eq__(self, other): return ( isinstance(other, PartitionDimensionDefinition) and self.name == other.name and self.partitions_def == other.partitions_def )
[docs]@experimental class MultiPartitionsDefinition(PartitionsDefinition): """ Takes the cross-product of partitions from two partitions definitions. For example, with a static partitions definition where the partitions are ["a", "b", "c"] and a daily partitions definition, this partitions definition will have the following partitions: 2020-01-01|a 2020-01-01|b 2020-01-01|c 2020-01-02|a 2020-01-02|b ... Args: partitions_defs (Mapping[str, PartitionsDefinition]): A mapping of dimension name to partitions definition. The total set of partitions will be the cross-product of the partitions from each PartitionsDefinition. Attributes: partitions_defs (Sequence[PartitionDimensionDefinition]): A sequence of PartitionDimensionDefinition objects, each of which contains a dimension name and a PartitionsDefinition. The total set of partitions will be the cross-product of the partitions from each PartitionsDefinition. This sequence is ordered by dimension name, to ensure consistent ordering of the partitions. """ def __init__(self, partitions_defs: Mapping[str, PartitionsDefinition]): if not len(partitions_defs.keys()) == 2: raise DagsterInvalidInvocationError( "Dagster currently only supports multi-partitions definitions with 2 partitions definitions. " f"Your multi-partitions definition has {len(partitions_defs.keys())} partitions definitions." ) check.mapping_param( partitions_defs, "partitions_defs", key_type=str, value_type=PartitionsDefinition ) for dim_name, partitions_def in partitions_defs.items(): if isinstance(partitions_def, StaticPartitionsDefinition): if any( [ INVALID_STATIC_PARTITIONS_KEY_CHARACTERS & set(key) for key in partitions_def.get_partition_keys() ] ): raise DagsterInvalidDefinitionError( f"Invalid character in partition key for dimension {dim_name}. " "A multi-partitions definition cannot contain partition keys with " "the following characters: |, [, ], ," ) self._partitions_defs: List[PartitionDimensionDefinition] = sorted( [ PartitionDimensionDefinition(name, partitions_def) for name, partitions_def in partitions_defs.items() ], key=lambda x: x.name, ) @property def partitions_defs(self) -> Sequence[PartitionDimensionDefinition]: return self._partitions_defs def get_partitions(self, current_time: Optional[datetime] = None) -> Sequence[Partition]: partition_sequences = [ partition_dim.partitions_def.get_partitions(current_time=current_time) for partition_dim in self._partitions_defs ] def get_multi_dimensional_partition(partitions_tuple: Tuple[Partition]) -> Partition: check.invariant(len(partitions_tuple) == len(self._partitions_defs)) partitions_by_dimension: Dict[str, Partition] = { self._partitions_defs[i].name: partitions_tuple[i] for i in range(len(partitions_tuple)) } return Partition( value=partitions_by_dimension, name=MultiPartitionKey( { dimension_key: partition.name for dimension_key, partition in partitions_by_dimension.items() } ), ) return [ get_multi_dimensional_partition(partitions_tuple) for partitions_tuple in itertools.product(*partition_sequences) ] def __eq__(self, other): return ( isinstance(other, MultiPartitionsDefinition) and self.partitions_defs == other.partitions_defs ) def __hash__(self): return hash( tuple( [ (partitions_def.name, partitions_def.__repr__()) for partitions_def in self.partitions_defs ] ) ) def __str__(self) -> str: dimension_1 = self._partitions_defs[0] dimension_2 = self._partitions_defs[1] partition_str = ( "Multi-partitioned, with dimensions: \n" f"{dimension_1.name.capitalize()}: {str(dimension_1.partitions_def)} \n" f"{dimension_2.name.capitalize()}: {str(dimension_2.partitions_def)}" ) return partition_str def __repr__(self) -> str: return f"{type(self).__name__}(dimensions={[str(dim) for dim in self.partitions_defs]}"
def get_tags_from_multi_partition_key(multi_partition_key: MultiPartitionKey) -> Mapping[str, str]: check.inst_param(multi_partition_key, "multi_partition_key", MultiPartitionKey) return { get_multidimensional_partition_tag(dimension.dimension_name): dimension.partition_key for dimension in multi_partition_key.dimension_keys } def get_multipartition_key_from_tags(tags: Mapping[str, str]) -> str: partitions_by_dimension: Dict[str, str] = {} for tag in tags: if tag.startswith(MULTIDIMENSIONAL_PARTITION_PREFIX): dimension = tag[len(MULTIDIMENSIONAL_PARTITION_PREFIX) :] partitions_by_dimension[dimension] = tags[tag] return MultiPartitionKey(partitions_by_dimension)